(9条消息) 十分钟搞定pandas

原文地址:http://www.cnblogs.com/chaosimple/p/4153083.html本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:一、            创建对象可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:4、查看不同列的数据类型:5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:二、            查看数据详情请参阅:Basics Section 1、  查看frame中头部和尾部的行:2、  显示索引、列和底层的numpy数据:3、  describe()函数对于数据的快速统计汇总:4、  对数据的转置:5、  按轴进行排序6、  按值进行排序三、            选择虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式:.at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。l  获取1、 选择一个单独的列,这将会返回一个Series,等同于df.A:2、 通过[]进行选择,这将会对行进行切片l  通过标签选择1、 使用标签来获取一个交叉的区域2、 通过标签来在多个轴上进行选择3、 标签切片4、 对于返回的对象进行维度缩减5、 获取一个标量6、 快速访问一个标量(与上一个方法等价)l  通过位置选择1、 通过传递数值进行位置选择(选择的是行)2、 通过数值进行切片,与numpy/python中的情况类似3、 通过指定一个位置的列表,与numpy/python中的情况类似4、 对行进行切片5、 对列进行切片6、 获取特定的值l  布尔索引1、 使用一个单独列的值来选择数据:2、 使用where操作来选择数据:3、 使用isin()方法来过滤: l  设置1、 设置一个新的列:2、 通过标签设置新的值:3、 通过位置设置新的值:4、 通过一个numpy数组设置一组新值:上述操作结果如下:5、 通过where操作来设置新的值:四、            缺失值处理在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、2、  去掉包含缺失值的行:3、  对缺失值进行填充:4、  对数据进行布尔填充:五、            相关操作详情请参与 Basic Section On Binary Opsl  统计(相关操作通常情况下不包括缺失值)1、  执行描述性统计:2、  在其他轴上进行相同的操作:3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:l  Apply1、  对数据应用函数:l  直方图具体请参照:Histogramming and Discretization l  字符串方法Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.六、            合并Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging sectionl  Concatl  Join 类似于SQL类型的合并,具体请参阅:Database style joiningl  Append 将一行连接到一个DataFrame上,具体请参阅Appending:七、            分组对于”group by”操作,我们通常是指以下一个或多个操作步骤:l  (Splitting)按照一些规则将数据分为不同的组;l  (Applying)对于每组数据分别执行一个函数;l  (Combining)将结果组合到一个数据结构中;详情请参阅:Grouping section1、  分组并对每个分组执行sum函数:2、  通过多个列进行分组形成一个层次索引,然后执行函数:八、            Reshaping详情请参阅 Hierarchical Indexing 和 Reshaping。l  Stackl  数据透视表,详情请参阅:Pivot Tables.可以从这个数据中轻松的生成数据透视表:九、            时间序列Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。1、  时区表示:2、  时区转换:3、  时间跨度转换:4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。十、            Categorical从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introduction和API documentation。1、  将原始的grade转换为Categorical数据类型:2、  将Categorical类型数据重命名为更有意义的名称:3、  对类别进行重新排序,增加缺失的类别:4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:5、  对Categorical列进行排序时存在空的类别:十一、           画图具体文档参看:Plotting docs对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:十二、           导入和保存数据l  CSV,参考:Writing to a csv file1、  写入csv文件:2、  从csv文件中读取:l  HDF5,参考:HDFStores1、  写入HDF5存储:2、  从HDF5存储中读取:l  Excel,参考:MS Excel1、  写入excel文件:2、  从excel文件中读取:
(0)

相关推荐