R语言使用自组织映射神经网络(SOM)进行客户细分
相关推荐
-
ResistoXplorer——基于Web的耐药基因组数据可视化,统计和探索新分析工具
对宏基因组测序后的数据进行抗生素耐药性基因组的注释与分析,逐渐成为一条必经之路.过去,人们需要自己下载相关数据库再用比对工具进行比对,然后去冗余,再进行下游分析.这通常需要学习编程并熟练应用,对于一些 ...
-
【生成模型】关于无监督生成模型,你必须知道的基础
大家好,小米粥销声匿迹了很长一段时间,今天又杀回来啦!这次主要是介绍下生成模型的相关内容,尤其是除了GAN之外的其他生成模型,另外应部分读者要求,本系列内容增添了代码讲解,希望能使大家获益,更希望大家 ...
-
R语言基于递归神经网络RNN的温度时间序列预测
原文链接:http://tecdat.cn/?p=20335 在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术.我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数 ...
-
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
原文链接:http://tecdat.cn/?p=23485 用于R语言的多层感知器(MLP)和极限学习机(ELM)进行时间序列预测.请注意,由于神经网络无法利用GPU处理,因此大型网络的训练速度往往 ...
-
用R语言中的神经网络预测时间序列:多层感知器和极限学习机
原文链接:http://tecdat.cn/?p=16392 对于此示例,我将对R中的时间序列进行建模.我将最后24个观察值保留为测试集,并将使用其余的观察值来拟合神经网络.当前有两种类型的神经网络可 ...
-
R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析
原文链接:http://tecdat.cn/?p=19077 导入 自组织映射 (SOM)是一种工具,通过生成二维表示来可视化高维数据中的模式,在高维结构中显示有意义的模式.通过以下方式使用给定的数据 ...
-
数据挖掘:基于R语言的实战 | 第7章:神经网络的基本方法
上一章我们简单介绍了有监督学习方法中最常用的线性模型和广义线性模型,第7章我们来认识一下神经网络的基本方法.本章先介绍了单个神经元和神经网络,然后介绍神经网络的训练方法,接着介绍提升模型泛化能力的一些 ...
-
R语言实现CNN(卷积神经网络)模型进行回归数据分析
原文链接:http://tecdat.cn/?p=18149 当我们将CNN(卷积神经网络)模型用于训练多维类型的数据(例如图像)时,它们非常有用.我们还可以实现CNN模型进行回归数据分析.我们之前使 ...
-
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
原文链接:http://tecdat.cn/?p=11878 Nelson-Siegel- [Svensson]模型是拟合收益曲线的常用方法.它的优点是其参数的经济可解释性,被银行广泛使用.但它不一定 ...
-
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
原文链接:http://tecdat.cn/?p=23184 在本文中,我们将学习如何使用keras,用手写数字图像数据集(即MNIST)进行深度学习.本文的目的是为了让大家亲身体验并熟悉培训课程中的 ...
-
R语言深度学习:用keras神经网络回归模型预测时间序列数据
原文链接:http://tecdat.cn/?p=23250 回归数据可以用Keras深度学习API轻松拟合.在本教程中,我们将简要地学习如何通过使用R中的Keras神经网络模型来拟合和预测回归数据. ...