用R语言中的神经网络预测时间序列:多层感知器和极限学习机
相关推荐
-
Excel应用大全 | 时间序列预测的步骤
一本书教会你分分钟搞定数据分析! 人们无法知道股票市场在明天是涨是跌,可是会通过以往已有的表现判断未来的走势而做出决策.人们无法预知房地产市场在未来五年是怎样的,同样会通过以往的表现和已知的信息做投资 ...
-
开启生成式视频压缩:谷歌基于GAN来实现,性能与HEVC相当
选自arXiv 机器之心编译 编辑:陈萍 来自谷歌的研究者提出了一种基于生成对抗网络 (GAN) 的神经视频压缩方法,该方法优于以前的神经视频压缩方法,并且在用户研究中与 HEVC 性能相当. 通常, ...
-
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
原文链接:http://tecdat.cn/?p=23485 用于R语言的多层感知器(MLP)和极限学习机(ELM)进行时间序列预测.请注意,由于神经网络无法利用GPU处理,因此大型网络的训练速度往往 ...
-
R语言基于递归神经网络RNN的温度时间序列预测
原文链接:http://tecdat.cn/?p=20335 在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术.我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数 ...
-
Prophet在R语言中进行时间序列数据预测
原文链接:http://tecdat.cn/?p=7327 您将学习如何使用Prophet(在R中)解决一个常见问题:预测公司明年的每日订单. 数据准备与探索 Prophet最拟合每日数据以及至少一年 ...
-
使用R语言随机波动模型SV处理时间序列中的随机波动率
原文链接:http://tecdat.cn/?p=12030 准备数据 采样函数svsample需要其输入数据y是数值向量,而且没有任何缺失值(NA),如果提供其他任何内容,则会报错.在y包含零的情况 ...
-
R语言使用ARIMA模型预测股票收益时间序列
原文链接:http://tecdat.cn/?p=2831 "预测非常困难,特别是关于未来".丹麦物理学家尼尔斯·波尔(Neils Bohr) 很多人都会看到这句名言.预测是这篇博 ...
-
R语言多元Copula GARCH 模型时间序列预测
原文链接 http://tecdat.cn/?p=2623 和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列.直观的来说 ,后者是比前者"波动"更多且随机波动的序列 ...
-
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
原文链接:http://tecdat.cn/?p=18860 简介 时间序列分析是统计学中的一个主要分支,主要侧重于分析数据集以研究数据的特征并提取有意义的统计信息来预测序列的未来值.时序分析有两种方 ...
-
R语言用ARIMA模型预测巧克力的兴趣趋势时间序列
原文链接:http://tecdat.cn/?p=18850 在本文中我们对在Google趋势上的关键字" Chocolate "序列进行预测.序列如下 > report = ...
-
R语言中的偏最小二乘回归PLS-DA
原文链接:http://tecdat.cn/?p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC).这带来许多优点: 预测变量的数量 ...