DL:LinearNN(numpy自定义的) solve XOR problem
相关推荐
-
教AI做件简单的事:从零开始构建首个神经网络
全文共2278字,预计学习时长6分钟 图源:Google 很长时间以来,我一直对构建神经网络跃跃欲试,现在终于有机会来研究它了.我想我并没有完全掌握神经网络背后的数学原理,所以先教人工智能做一些简单的 ...
-
(2条消息) 一篇文章让你彻底搞懂神经网络:从原理到优化如此简单
0. 文章介绍了什么 介绍了神经网络的基础单元--神经元neurons, 在神经元中使用了常见的激活函数: sigmoid 神经网络中的神经元是如何连接和交互的 创建了一个包含身高和体重(特征)作为 ...
-
ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem)
ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem) 输出结果 实现代码 #BP solve XOR Problem import numpy as ...
-
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率 输出结果 更新-- 代码设计 import mnist_loader impor ...
-
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率 输出结果 核心代码 #DL之NN:基于sklearn自带手写数字图片识别数据集 ...
-
DL之simpleNet:利用自定义的simpleNet(设好权重)对新样本进行预测、评估、输出梯度值
DL之simpleNet:利用自定义的simpleNet(设好权重)对新样本进行预测.评估.输出梯度值 导读 理解神经网络内部的数学机制 输出结果 输出权重参数: [[-0.94465146 -1.2 ...
-
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码 基于自定义数据集利用深度神经网络(输入层(10个uni ...
-
DL之DNN:自定义2层神经网络TwoLayerNet模型(计算梯度两种方法)利用MNIST数据集进行训练、预测
DL之DNN:自定义2层神经网络TwoLayerNet模型(计算梯度两种方法)利用MNIST数据集进行训练.预测 导读 利用python的numpy计算库,进行自定义搭建2层神经网络TwoLayerN ...
-
DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、GC对比
DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练.GC对比 导读 神经网络算法封装为层级结构的作用.在神经网络算法中,通过将 ...
-
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能 输出结果 ====== ...
-
DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
DL之DNN优化技术:自定义MultiLayerNet[5*100+ReLU]对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化.He参数初始化)性能差异 导读 #思路:观察不同的权 ...