通俗一步法:R语言构建时间序列模型
相关推荐
-
【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列
原文链接:http://tecdat.cn/?p=21773 视频: 在Python和R语言中建立EWMA,ARIMA模型预测时间序列 概述 学习创建时间序列预测的步骤 关注Dickey-Fuller ...
-
Python用ARIMA和SARIMA模型预测销量时间序列数据
原文链接:http://tecdat.cn/?p=21573 介绍 ARIMA模型是时间序列预测中一种常用的统计方法.指数平滑和ARIMA模型是时间序列预测中应用最为广泛的两种方法,它们是解决这一问题 ...
-
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
原文链接:http://tecdat.cn/?p=18860 简介 时间序列分析是统计学中的一个主要分支,主要侧重于分析数据集以研究数据的特征并提取有意义的统计信息来预测序列的未来值.时序分析有两种方 ...
-
R语言中ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型用于预测时间序列数据
原文链接:http://tecdat.cn/?p=5919 在本文中,我将介绍ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型如何用于预测时间序列数据. 使用滞后算子计算 ...
-
Python和R用EWMA,ARIMA模型预测时间序列
原文链接:http://tecdat.cn/?p=21773 本文学习创建时间序列预测的步骤,关注Dickey-Fuller检验和EWMA,ARIMA(自回归移动平均)模型 从理论上学习这些概念以及它 ...
-
【时间序列】自回归模型
本篇主要讲解AR,ARMA,ARIMA等传统时间序列模型,包括具体代码操作.并附讲时间序列的一些基础知识点,如果有基础的可以直接跳到模型部分. 1. 时间序列的平稳性 1.1 自协方差.自相关函数 自 ...
-
R语言使用ARIMAX预测失业率经济时间序列数据
原文链接:http://tecdat.cn/?p=22521 在大数据的趋势下,我们经常需要做预测性分析来帮助我们做决定.其中一个重要的事情是根据我们过去和现在的数据来预测未来.这种方法我们通常被称为 ...
-
ARIMA时间序列模型的步骤, 程序和各种检验, 附上代码并通过示例进行解读!
邮箱:econometrics666@126.com 所有计量经济圈方法论丛的do文件, 微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问. 关于时间序列方法,1.时间序列分析的各种程序 ...
-
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
原文链接:http://tecdat.cn/?p=22511 标准的ARIMA(移动平均自回归模型)模型允许只根据预测变量的过去值进行预测.该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去 ...
-
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
原文链接:http://tecdat.cn/?p=22849 当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外 ...
-
R语言使用ARIMA模型预测股票收益时间序列
原文链接:http://tecdat.cn/?p=2831 "预测非常困难,特别是关于未来".丹麦物理学家尼尔斯·波尔(Neils Bohr) 很多人都会看到这句名言.预测是这篇博 ...
-
R语言广义相加模型 (GAMs)分析预测CO2时间序列数据
原文链接:http://tecdat.cn/?p=20904 环境科学中的许多数据不适合简单的线性模型,最好用广义相加模型(GAM)来描述. 这基本上就是具有 光滑函数的广义线性模型(GLM)的扩展 ...
-
R语言用ARIMA模型预测巧克力的兴趣趋势时间序列
原文链接:http://tecdat.cn/?p=18850 在本文中我们对在Google趋势上的关键字" Chocolate "序列进行预测.序列如下 > report = ...
-
R语言用Copulas模型的尾部相依性分析损失赔偿费用
原文链接:http://tecdat.cn/?p=22226 两个随机变量之间的相依性问题备受关注,相依性(dependence)是反映两个随机变量之间关联程度的一个概念.它与相关性(correlat ...
-
R语言向量误差修正模型 (VECMs)分析长期利率和通胀率影响关系
原文链接:http://tecdat.cn/?p=22215 向量自回归模型估计的先决条件之一是被分析的时间序列是平稳的.但是,经济理论认为,经济变量之间在水平上存在着均衡关系,可以使这些变量差分而平 ...
-
R语言用线性回归模型预测空气质量臭氧数据
原文链接:http://tecdat.cn/?p=11387 尽管线性模型是最简单的机器学习技术之一,但它们仍然是进行预测的强大工具.这尤其是由于线性模型特别容易解释这一事实.在这里,我将讨论使用空气 ...
-
R语言信用风险回归模型中交互作用的分析及可视化
原文链接:http://tecdat.cn/?p=21892 引言 多元统计分析 中,交互作用是指某因素作用随其他因素水平的不同而不同,两因素同时存在是的作用不等于两因素单独作用之和(相加交互作用)或 ...