TUM大牛组最新工作:不需要3D包围盒,单目实现3D车辆检测!

(0)

相关推荐

  • 使用 YOLO 进行目标检测

    重磅干货,第一时间送达 自从世界了解人工智能以来,有一个特别的用例已经被讨论了很多.它们是自动驾驶汽车.我们经常在科幻电影中听到.读到甚至看到这些.有人说,我们将在2010年拥有自动驾驶汽车,有人说到 ...

  • 从2D到3D的目标检测综述

    文章:An Overview Of 3D Object Detection 作者:Yilin Wang  Jiayi Ye 翻译:分享者 本文仅做学术分享,如有侵权,请联系删除.欢迎各位加入免费知识星 ...

  • 最全综述:基于深度学习的三维重建算法

    前言 目前,三维重建技术已在游戏.电影.测绘.定位.导航.自动驾驶.VR/AR.工业制造以及消费品领域等方面得到了广泛的应用.方法同样也层出不穷,我们将这些方法依据原理分为两类: 基于传统多视图几何的 ...

  • ECCV 2020 | PHOSA:一种基于单目图像的人-物重建方法

    概述 作者提出了一种能够推断出人类和物体的形状和空间排列的方法,只需要一张在自然环境中捕捉的图像,且不需要任何带有3D监督的数据集.该方法的主要观点是,将人类和物体结合起来考虑,这样会产生" ...

  • ECCV | Pixel2Mesh:单目彩色相机重建三维模型

    重磅干货,第一时间送达 该paper是由普林斯顿大学3个英特尔实验室4个复旦大学数据科学学院以及5个腾讯人工智能实验室研究员合作的.来自于复旦大学计算机科学学院上海市智能信息处理重点实验室.该论文已经 ...

  • 基于深度学习的单目人体姿态估计方法综述(一)

    原文:Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods 摘要: 基于视觉的单目人体姿态估计是计算机视觉中 ...

  • 自动驾驶中激光雷达检测障碍物理论与实践

    激光雷达是利用激光束来感知三维世界,通过测量激光返回所需的时间输出为点云.它集成在自动驾驶.无人机.机器人.卫星.火箭等许多领域. 本文从自动驾驶汽车的角度解释它是如何工作的,然后将探讨如何处理点云, ...

  • 目标检测学习笔记

    这篇是看完吴恩达老师的 deeplearning.ai 课程里目标检测课程的学习笔记,文章的图片主要来自课程. 目录如下: 目标定位 基于滑动窗口的目标检测算法 滑动窗口的卷积实现 Bounding ...

  • CoCoNets:连续对比的3D场景再现

    点击上方"深度学习爱好者",选择加"星标"或"置顶" 重磅干货,第一时间送达 小黑导读 论文是学术研究的精华和未来发展的明灯.小黑决心每天为 ...

  • 多视图立体匹配论文分享:BlendedMVS

    作者:Toddi-Qi 来源:微信公众号|3D视觉工坊(系投稿) 论文题目:BlendedMVS: A Large-scale Dataset for Generalized Multi-view S ...

  • PointNet:三维点云分割与分类的深度学习—概述

    本文是关于PointNet点云深度学习的翻译与理解,PointNet是一种直接处理点云的新型神经网络,它很好地体现了输入点云的序列不变性. 摘要 点云是一种重要的几何数据结构类型.由于其数据格式不规则 ...

  • 自动驾驶中的三维目标检测综述

    文章:3D Object Detection for Autonomous Driving: A Survey 作者:Rui Qian, Xin Lai, and Xirong Li 编译:点云PCL ...

  • 单视图三维重建

    本文是来自中北大学赵同学的翻译,原论文是 <Learning Shape Priors for Single-View 3D Completion and Reconstruction > ...

  • 使用单一卷积网实时进行端到端3D检测,跟踪和运动预测

    2018 CVPR Wenjie Luo,Bin Yang and Raquel Urtasun Uber Advanced Technologies Group University of Toro ...

  • 3D深度学习简介

    重磅干货,第一时间送达 在过去的几年里,像微软Kinect或Asus Xtion传感器这样,既能提供彩色图像又能提供密集深度图像的新型相机系统变得唾手可得.人们对此类系统的期望很高,它们将推动机器人技 ...