【影像组学预测模型-Radiomics】实操教学
相关推荐
-
ML之PLiR之Glmnet:利用Glmnet算法求解ElasticNet回归类型问题(实数值评分预测)
ML之PLiR之Glmnet算法:利用Glmnet算法求解ElasticNet回归类型问题(实数值评分预测) 输出结果 0 2 1 2 2 2 3 3 4 3 5 3 6 3 7 3 8 3 9 2 ...
-
数据分析:基于glmnet的Cox
glmnet提供了LASSO或ridge regression的Cox-PH分析模式,用于研究预测变量与生存时间的关系. 加载数据 library(glmnet)library(survival)da ...
-
Lasso算法理论介绍
先看一波过拟合: 图中,红色的线存在明显的过拟合,绿色的线才是合理的拟合曲线,为了避免过拟合,我们可以引入正则化. 下面可以利用正则化来解决曲线拟合过程中的过拟合发生,存在均方根误差也叫标准误差,即为 ...
-
高分生信SCI套路攻略!精选我最喜欢的3大套路!谁用谁高分!(附代码)
基于线性模型的特征筛选方法 大家好,我是风风.单细胞系列的推文告一段路,我们把基本分析和常见的高级分析基本都走了一遍,剩下的就是实操进行排列组合了.今天我们来聊点新的内容--基于线性模型的特征筛选方法 ...
-
R语言Bootstrap的岭回归和自适应LASSO回归可视化
原文链接:http://tecdat.cn/?p=22921 拟合岭回归和LASSO回归,解释系数,并对其在λ范围内的变化做一个直观的可视化. # 加载CBI数据 # 子集所需的变量(又称,列) CB ...
-
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
原文链接:http://tecdat.cn/?p=3795 Glmnet是一个通过惩罚最大似然关系拟合广义线性模型的软件包.正则化路径是针对正则化参数λ的值网格处的lasso或Elastic Net( ...
-
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
原文链接:http://tecdat.cn/?p=21444 逻辑logistic回归是研究中常用的方法,可以进行影响因素筛选.概率预测.分类等,例如医学研究中高通里测序技术得到的数据给高维变量选择问 ...
-
R语言解决Lasso问题
Lasso回归复杂度调整的程度由参数lambda来控制,lambda越大模型复杂度的惩罚力度越大,从而获得一个较少变量的模型.Lasso回归和bridge回归都是Elastic Net广义线性模型的特 ...
-
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
原文链接:http://tecdat.cn/?p=23378 1 介绍 在本文中,我们将研究以下主题 证明为什么低维预测模型在高维中会失败. 进行主成分回归(PCR). 使用glmnet()进行岭回归 ...
-
TARGET临床数据学习
参考:共由小兑 https://www.jianshu.com/p/1be8c349dd9f TARGET ( Therapeutically Applicable Research To Gene ...
