Lasso算法理论介绍
相关推荐
-
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
原文链接:http://tecdat.cn/?p=21444 逻辑logistic回归是研究中常用的方法,可以进行影响因素筛选.概率预测.分类等,例如医学研究中高通里测序技术得到的数据给高维变量选择问 ...
-
数据挖掘:基于R语言的实战 | 第6章:线性模型与广义线性模型
第6章给大家介绍实际场景中最常用的两种统计模型,线性模型和广义线性模型.本章首先在6.1节中介绍线性模型,然后在6.2节中介绍广义线性模型,在6.3节再介绍线性模型和广义线性模型中的变量选择.本章最后 ...
-
R语言Bootstrap的岭回归和自适应LASSO回归可视化
原文链接:http://tecdat.cn/?p=22921 拟合岭回归和LASSO回归,解释系数,并对其在λ范围内的变化做一个直观的可视化. # 加载CBI数据 # 子集所需的变量(又称,列) CB ...
-
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
原文链接:http://tecdat.cn/?p=3795 Glmnet是一个通过惩罚最大似然关系拟合广义线性模型的软件包.正则化路径是针对正则化参数λ的值网格处的lasso或Elastic Net( ...
-
R语言如何和何时使用glmnet岭回归
原文:http://tecdat.cn/?p=4103 本文向您展示如何在R中使用glmnet包进行岭回归(使用L2正则化的线性回归),并使用模拟来演示其相对于普通最小二乘回归的优势. 岭回归 当回归 ...
-
【影像组学预测模型-Radiomics】实操教学
影像组学(Radiomics)是一个新兴的概念,2012 年由荷兰学者 Philippe Lambin 首次提出,其定义是借助计算机软件,从医学影像图像中挖掘海量的定量影像特征,使用统计学和/或机器学 ...
-
深入讨论机器学习 8 大回归模型的基本原理以及差异!
几乎每个机器学习从业者都知道回归,其中一些人可能认为这没什么大不了的,只是从参数之间的切 换罢了.本文将阐明每种回归算法的细节,以及确切的区别.包括 : OLS Weighted Least Squa ...
-
高分生信SCI套路攻略!精选我最喜欢的3大套路!谁用谁高分!(附代码)
基于线性模型的特征筛选方法 大家好,我是风风.单细胞系列的推文告一段路,我们把基本分析和常见的高级分析基本都走了一遍,剩下的就是实操进行排列组合了.今天我们来聊点新的内容--基于线性模型的特征筛选方法 ...
-
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
原文链接:http://tecdat.cn/?p=23378 1 介绍 在本文中,我们将研究以下主题 证明为什么低维预测模型在高维中会失败. 进行主成分回归(PCR). 使用glmnet()进行岭回归 ...
-
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
原文链接:http://tecdat.cn/?p=21602 正则化(regularization) 正则化路径是在正则化参数lambda的值网格上计算套索LASSO或弹性网路惩罚的正则化路径.该算法 ...
-
GWAS宝刀未老
今年(2020)2月,解放军总医院放射治疗科的研究团队,在国际期刊<Journal of Cancer> 上发表了题为"Precise prediction of the rad ...
-
R语言Lasso回归模型变量选择和糖尿病发展预测模型
原文链接:http://tecdat.cn/?p=22721 Lease Absolute Shrinkage and Selection Operator(LASSO)在给定的模型上执行正则化和变量 ...
