R语言Lasso回归模型变量选择和糖尿病发展预测模型
相关推荐
-
方法论衡 | Beiser-McGrath等:小心,你的交互项模型可能是错的!
文献来源:Janina Beiser-McGrath and Liam F. Beiser-McGrath. (2020). Problems with products? Control strat ...
-
Lasso算法理论介绍
先看一波过拟合: 图中,红色的线存在明显的过拟合,绿色的线才是合理的拟合曲线,为了避免过拟合,我们可以引入正则化. 下面可以利用正则化来解决曲线拟合过程中的过拟合发生,存在均方根误差也叫标准误差,即为 ...
-
数据挖掘:基于R语言的实战 | 第6章:线性模型与广义线性模型
第6章给大家介绍实际场景中最常用的两种统计模型,线性模型和广义线性模型.本章首先在6.1节中介绍线性模型,然后在6.2节中介绍广义线性模型,在6.3节再介绍线性模型和广义线性模型中的变量选择.本章最后 ...
-
【影像组学预测模型-Radiomics】实操教学
影像组学(Radiomics)是一个新兴的概念,2012 年由荷兰学者 Philippe Lambin 首次提出,其定义是借助计算机软件,从医学影像图像中挖掘海量的定量影像特征,使用统计学和/或机器学 ...
-
R语言信用风险回归模型中交互作用的分析及可视化
原文链接:http://tecdat.cn/?p=21892 引言 多元统计分析 中,交互作用是指某因素作用随其他因素水平的不同而不同,两因素同时存在是的作用不等于两因素单独作用之和(相加交互作用)或 ...
-
R语言中回归和分类模型选择的性能指标
原文链接:http://tecdat.cn/?p=11334 有多种性能指标来描述机器学习模型的质量.但是,问题是,对于问题正确的方法是什么?在这里,我讨论了选择回归模型和分类模型时最重要的性能指标. ...
-
R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险
原文链接:http://tecdat.cn/?p=22410 本文的目的是完成一个逻辑回归分析.使你对分析步骤和思维过程有一个基本概念. library(tidyverse) library(broo ...
-
R语言计量经济学:虚拟变量(哑变量)在线性回归模型中的应用
原文链接:http://tecdat.cn/?p=22805 为什么需要虚拟变量? 大多数数据都可以用数字来衡量,如身高和体重.然而,诸如性别.季节.地点等变量则不能用数字来衡量.相反,我们使用虚拟变 ...
-
R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况
原文链接:http://tecdat.cn/?p=22966 逻辑回归是一种拟合回归曲线的方法,y=f(x),当y是一个分类变量时.这个模型的典型用途是在给定一组预测因素x的情况下预测y,预测因素可以 ...
-
R语言用Garch模型和回归模型对股票价格分析
原文链接:http://tecdat.cn/?p=18310 为了找出影响价格波动的主要因素,我们使用逐步回归法来剔除一些对于应变量即价格影响很小的自变量剔除出我们的模型,我们分别把WTI Price ...
-
R语言时间序列GARCH模型分析股市波动率
原文链接:http://tecdat.cn/?p=22360 在这篇文章中,我们将学习一种在价格序列中建立波动性模型的标准方法,即广义自回归条件异方差(GARCH)模型. 价格波动的 GARCH 模型 ...
-
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
原文链接:http://tecdat.cn/?p=22511 标准的ARIMA(移动平均自回归模型)模型允许只根据预测变量的过去值进行预测.该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去 ...
-
通俗一步法:R语言构建时间序列模型
通俗一步法:R语言构建时间序列模型