生信编程直播课程优秀学员作业展示2
题目:hg19基因组序列的一些探究
学员:x2yline
具体题目详情请参考生信技能树论坛
数据来源:http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz 下载.gz数据后解压
R语言实现(太卡,高能报警)
代码地址:https://raw.githubusercontent.com/x2yline/courseranotes/master/myscript/class2/fastafileGCandN.R
代码内容:
setwd('E:\\r\\biotrainee_demo\\class 2')# 读入数据t1 <- Sys.time()df <- read.csv('chr1.fa', header=F, stringsAsFactors=F)# index_df 为chr所在的位置index_df <- data.frame(begin=which(sapply(df[,1], function(x){substr(x, start=1, stop=1)=='>'})))# index_df1 为string所在的位置+1index_df1 <- data.frame(rbind(matrix(index_df[-1,1]),dim(df)[1]+1))# 把index_start和index_end存入data.frameindex_df2 <- cbind(index_df, index_df1)remove(index_df1, index_df)# 得出每个染色体对应string后计算其N与GC百分比result <- apply(index_df2, 1, function(x) { # 把提取字符串后把字符串变为大写y <- toupper(paste(df[(x[1]+1):(x[2]-1),1], collapse=''))y <- strsplit(y, split=character(0))[[1]]N <- length(y[y =='N'])/length(y)GC <- length(y[y =='G' | y == 'C'])/(length(y)-length(y[y =='N']))c(N,GC)})# 把行名改为N和GC并转秩rownames(result) = c('N','GC')result <- t(result)# 取结果前几行head(result)difftime(Sys.time(), t1, units = 'secs')
由于电脑问题,试了一下1号染色体,电脑卡住了,于是又试了一下Y染色体,跑出来结果如下:

耗时:41.44945 secs
电脑配置信息:
R version 3.3.2 (2016-10-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
python3第一种实现方法(运行速度较快,但没有3快)
数据来源: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
数据下载时间:2017-01-10 23:08
运行消耗时间:309 seconds
未优化速度的代码如下
import osimport timebegin = time.time()os.chdir(r'F:\tmp\chromFa')def count_n_and_gc(file):content = []chromsome = []g = 0; c = 0; n = 0; a = 0; t = 0with open(file) as f:raw_list = f.readlines()for i in raw_list:if not i.startswith('>'):i = i.upper()n += i.count('N')g += i.count('G')c += i.count('C')a += i.count('A')t += i.count('T')else:if chromsome:content.append((n ,a, t, c, g))g = 0; c = 0; n = 0; a = 0; t = 0chromsome.append(i.strip())content.append(( n ,a, t, c, g))return (content,chromsome)content = []chromsome = []for i in (list(range(1,23)) + ['X','Y']):file = 'chr'+ str(i) + '.fa'print('Start dealing with ' + file)m, n = count_n_and_gc(file)content += mchromsome += nall_info = 'chr,GC_ratio,N_ratio,Length,N,A,T,C,G'for i in range(len(chromsome)):data = '\n'+str(chromsome[i]) +',' + "%.5f"%((content[i][-1]+content[i][-2])/sum(content[i][1:])) +',' + "%.5f" %(content[i][0]/(sum(content[i]))) +',' +str((sum(content[i]))) +',' +str((content[i][0])) + ',' +str(content[i][1])+',' +str(content[i][2])+',' +str(content[i][3])+',' +str(content[i][4])all_info += datawith open('hg19_analysis.csv','w') as f:f.write(all_info)print('Time using:'+ str(time.time() - begin) + ' seconds\n')
shell +python3(最快)
先使用shell脚本把所有chromFa.tar.gz 中的所有.fa文件合并为一个hg19.fa文件
脚本如下:
tar zvfx chromFa.tar.gzcat *.fa > hg19.farm chr*.faless hg19.fa
按照老师的方法对python算法进行改良
改良后的代码如下:
代码地址:
import osimport timeimport reimport sysfrom collections import OrderedDictstart = time.clock()def count_fasta_atcgn(file_path, buffer_size=1024*1024):bases = ['N', 'A', 'T', 'C', 'G']ATCG_analysis = OrderedDict()with open(file_path, 'r') as f:line1 = f.readline()chr_i = re.split('\s', line1)[0][1:]print(chr_i)ATCG_analysis[chr_i] = OrderedDict()for base in bases:ATCG_analysis[chr_i][base] = 0while True:chunk = f.read(buffer_size).upper()if '>' in chunk:chromsome = re.split('>',chunk)if chromsome[0]:for base in bases:ATCG_analysis[chr_i][base] += chromsome[0].count(base)for i in chromsome[1:]:if i:chr_i = re.split('\s', i[0:i.index('\n')])[0]print(chr_i)strings_i = i[i.index('\n'):].upper()ATCG_analysis[chr_i] = OrderedDict()for base in bases:ATCG_analysis[chr_i][base] = strings_i.count(base)else:for base in bases:ATCG_analysis[chr_i][base] += chunk.count(base)if not chunk:breakreturn ATCG_analysisdef write_atcg_to_csv(ATCG_analysis, file_path = '.'):file = os.path.join(file_path,'atcg_analysis.csv')csv_content = 'chromsome\tGC_content\tN_content\tLength\tN\tA\tT\tC\tG\n'for chr_id, atcg_count in ATCG_analysis.items():GC = atcg_count['G'] + atcg_count['C']N = atcg_count['N']Length = sum(atcg_count.values())GC_content = GC*1.0/(Length-N)N_content = N*1.0/Lengthcsv_content += chr_id + '\t' + '%.4f'%GC_content + '\t' + '%.4f'%N_content + '\t' + str(Length) + '\t' + str(atcg_count['N']) +'\t' + str(atcg_count['A']) + '\t' + str(atcg_count['T']) + '\t' + str(atcg_count['C'])+'\t'+ str(atcg_count['G'])+ '\n'with open(file, 'w') as f:csv_file_content = re.sub('\t', ',', csv_content)f.write(csv_file_content)print(u'File have been saved in '+ file)return csv_contentif sys.argv:result = OrderedDict()for f in sys.argv:done = 0f= f.strip(''''"''')if f.count('.') != 1 or f[-2:] == 'py' or not os.path.exists(f):continueprint(f)try:done = 1result = OrderedDict(count_fasta_atcgn(file_path = f, buffer_size = 1024*2048), **result)except Exception as e:if f.startswith('-'):passelse:print(type(e))if done == 1:file = write_atcg_to_csv(result)print(file)print('used %.2f s'%(time.clock()-start))else:print ('\n\nSorry! The command is invalid!\n')else:directory = input('Enter your file: ')start = time.clock()if directory.count('.') != 1 or directory[-2:] == 'py' or not os.path.exists(directory):print('Your file is invalid!')else:result = count_fasta_atcgn(file_path = directory, buffer_size = 1024*2048)file = write_atcg_to_csv(result)print('used %.2f s'%(time.clock()-start))
保存上述代码为 fasta_atcgn_summary.py 文件后
在命令行下输入:
python fasta_atcgn_summary.py F:\tmp\hg19.fa
部分输出结果如下

使用python进一步进行可视化处理
代码如下:
import osimport timeimport reimport sysfrom collections import OrderedDictstart = time.clock()def count_fasta_atcgn(file_path, buffer_size=1024*1024):bases = ['N', 'A', 'T', 'C', 'G']ATCG_analysis = OrderedDict()with open(file_path, 'r') as f:line1 = f.readline().upper()chr_i = re.split('\s', line1)[0][1:]print(chr_i)ATCG_analysis[chr_i] = OrderedDict()for base in bases:ATCG_analysis[chr_i][base] = 0while True:chunk = f.read(buffer_size).upper()if '>' in chunk:chromsome = re.split('>',chunk)if chromsome[0]:for base in bases:ATCG_analysis[chr_i][base] += chromsome[0].count(base)for i in chromsome[1:]:if i:chr_i = re.split('\s', i[0:i.index('\n')])[0]print(chr_i)strings_i = i[i.index('\n'):]ATCG_analysis[chr_i] = OrderedDict()for base in bases:ATCG_analysis[chr_i][base] = strings_i.count(base)else:for base in bases:ATCG_analysis[chr_i][base] += chunk.count(base)if not chunk:breakreturn ATCG_analysisdef write_atcg_to_csv(ATCG_analysis, file_path = '.'):file = os.path.join(file_path,'atcg_analysis.csv')csv_content = 'chromsome\tGC_content\tN_content\tLength\tN\tA\tT\tC\tG\n'for chr_id, atcg_count in ATCG_analysis.items():GC = atcg_count['G'] + atcg_count['C']N = atcg_count['N']Length = sum(atcg_count.values())GC_content = GC*1.0/(Length-N)N_content = N*1.0/Lengthcsv_content += chr_id + '\t' + '%.4f'%GC_content + '\t' + '%.4f'%N_content + '\t' + str(Length) + '\t' + str(atcg_count['N']) +'\t' + str(atcg_count['A']) + '\t' + str(atcg_count['T']) + '\t' + str(atcg_count['C'])+'\t'+ str(atcg_count['G'])+ '\n'with open(file, 'w') as f:csv_file_content = re.sub('\t', ',', csv_content)f.write(csv_file_content)print(u'File have been saved in '+ file)return csv_contentfile_path = 'F:\genome\chromFa\hg19.fa'ATCG_analysis = count_fasta_atcgn(file_path, buffer_size=1024*1024)cg_list = []chr_id_list = list(range(1,23)) + ['X','Y','M']for i in chr_id_list:cg_list.append((ATCG_analysis['CHR'+str(i)]['G']+ATCG_analysis['CHR'+str(i)]['C'])/(ATCG_analysis['CHR'+str(i)]['A']+ATCG_analysis['CHR'+str(i)]['T']+ATCG_analysis['CHR'+str(i)]['C']+ATCG_analysis['CHR'+str(i)]['G'])*100)import matplotlib.pyplot as pltplt.bar(left = range(25), height = cg_list, color='k')for i in range(len(cg_list)):plt.text( x=i-0.1, y=cg_list[i]+.35,s=str(round(cg_list[i])))plt.title('GC content for hg19 genome')plt.ylabel('GC content (%)')pos = []for i in range(len(chr_id_list)):pos.append(i + 0.35)plt.xticks(pos, list(range(1,23)) + ['X','Y','MT'], fontsize=8)plt.xlim(-0.2, )plt.ylim(0, 100)plt.savefig('F:\hg19_gc.png',dpi=600)plt.show()

本文编辑:思考问题的熊
