R语言用多项式回归和ARIMA模型预测电力负荷时间序列数据
相关推荐
-
各类统计方法R语言实现(五)
今天是各类统计方法R语言实现的第五期,我们主要介绍简单线性回归和多项式回归. 基础知识 什么是回归? 回归分析指用一个或多个自变量来预测因变量的方法. 简而言之,就是用已知的变量预测未知的变量,比如临 ...
-
通俗一步法:R语言构建时间序列模型
通俗一步法:R语言构建时间序列模型
-
【时间序列】关于时间竞赛,不得不知的十大模型。
作者:杰少 十大时序模型简介 简介 时间序列建模在销量预测,天气预测,车流量预测,股票价格预测等问题中扮演着至关重要的角色,一般时间序列的问题可以表述为下面的形式 由于时间序列数据的前后依赖性,为了避 ...
-
【时间序列】时间序列回归相关知识的总结与梳理
回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,是一种预测性的建模技术,它研究的是因变量(Y)和自变量(X)之间的关系,例如不同的施肥量对苗木高生长的关系.中国人的消费习惯对美 ...
-
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
原文链接:http://tecdat.cn/?p=22511 标准的ARIMA(移动平均自回归模型)模型允许只根据预测变量的过去值进行预测.该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去 ...
-
R语言使用ARIMA模型预测股票收益时间序列
原文链接:http://tecdat.cn/?p=2831 "预测非常困难,特别是关于未来".丹麦物理学家尼尔斯·波尔(Neils Bohr) 很多人都会看到这句名言.预测是这篇博 ...
-
使用R语言进行多项式回归、非线性回归模型曲线拟合
原文链接:http://tecdat.cn/?p=22531 对于线性关系,我们可以进行简单的线性回归.对于其他关系,我们可以尝试拟合一条曲线. 曲线拟合是构建一条曲线或数学函数的过程,它对一系列数据 ...
-
R语言用ARIMA模型预测巧克力的兴趣趋势时间序列
原文链接:http://tecdat.cn/?p=18850 在本文中我们对在Google趋势上的关键字" Chocolate "序列进行预测.序列如下 > report = ...
-
Python和R用EWMA,ARIMA模型预测时间序列
原文链接:http://tecdat.cn/?p=21773 本文学习创建时间序列预测的步骤,关注Dickey-Fuller检验和EWMA,ARIMA(自回归移动平均)模型 从理论上学习这些概念以及它 ...
-
R语言用线性回归模型预测空气质量臭氧数据
原文链接:http://tecdat.cn/?p=11387 尽管线性模型是最简单的机器学习技术之一,但它们仍然是进行预测的强大工具.这尤其是由于线性模型特别容易解释这一事实.在这里,我将讨论使用空气 ...
-
R语言使用ARIMAX预测失业率经济时间序列数据
原文链接:http://tecdat.cn/?p=22521 在大数据的趋势下,我们经常需要做预测性分析来帮助我们做决定.其中一个重要的事情是根据我们过去和现在的数据来预测未来.这种方法我们通常被称为 ...
-
R语言用LASSO,adaptive LASSO预测通货膨胀时间序列
原文链接:http://tecdat.cn/?p=22273 动机 如果你了解数据科学领域,你可能听说过LASSO.LASSO是一个对目标函数中的参数大小进行惩罚的模型,试图将不相关的变量从模型中排除 ...
-
R语言中实现广义相加模型GAM和普通最小二乘(OLS)回归
原文链接:http://tecdat.cn/?p=20882 1导言 这篇文章探讨了为什么使用广义相加模型 是一个不错的选择.为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择 ...