【AI不惑境】学习率和batchsize如何影响模型的性能?
相关推荐
-
深度学习三十问!一位算法工程师经历30+场CV面试后总结的常见问题合集(含答案)
作者丨灯会 来源丨极市平台 编辑丨极市平台 极市导读 作者灯会为21届中部985研究生,凭借自己整理的面经,去年在腾讯优图暑期实习,七月份将入职百度cv算法工程师.在去年灰飞烟灭的算法求职季中,经过3 ...
-
浅谈Transformer的初始化、参数化与标准化
作者丨苏剑林@知乎(已授权) 来源丨https://zhuanlan.zhihu.com/p/400925524 编辑丨极市平台 极市导读 本文以Transformer为中心展开,梳理了模型的初始化. ...
-
LeCun联手华人博士后提出自监督学习新作!却遭Reddit网友质疑:第一张图就错了...
转载自:新智元 来源:reddit | 编辑:LRS [导读]两个月前自监督学习领域出了一篇重磅论文,LeCun和他的学生共同完成新模型Barlow Twins,reddit网友指出,第一张图就错 ...
-
Paper:论文解读《Adaptive Gradient Methods With Dynamic Bound Of Learning Rate》中国本科生提出AdaBound的神经网络优化算法
Paper:论文解读-<Adaptive Gradient Methods With Dynamic Bound Of Learning Rate>中国本科生(学霸)提出AdaBound的 ...
-
【深度学习】收藏|神经网络调试Checklist
前言 作为一名每天与神经网络训练/测试打交道的同学,是否经常会遇到以下这几个问题,时常怀疑人生: 怎么肥事,训练正常着呢,咋效果这么差呢? 嗯..再等等是不是loss就更低了.啊?明明loss更低了呀 ...
-
ACL 2021|美团提出基于对比学习的文本表示模型,效果提升8%
尽管基于BERT的模型在NLP诸多下游任务中取得了成功,直接从BERT导出的句向量表示往往被约束在一个很小的区域内,表现出很高的相似度,因而难以直接用于文本语义匹配. 为解决BERT原生句子表示这种& ...
-
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型[6*100+ReLU+SGD]对Mnist数据集训练来理解过拟合现象 导读 自定义少量的Mnist数据集,利用全连接神经网络MultiLayerNet ...
-
【AI不惑境】网络的宽度如何影响深度学习模型的性能?
大家好,这是专栏<AI不惑境>的第三篇文章,讲述模型宽度与模型性能的关系. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程 ...
-
【AI不惑境】网络深度对深度学习模型性能有什么影响?
大家好,这是专栏<AI不惑境>的第二篇文章,讲述模型深度与模型性能的关系. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程 ...
-
【AI不惑境】AutoML在深度学习模型设计和优化中有哪些用处?
大家好,这是专栏<AI不惑境>的第十二篇文章,讲述AutoML在深度学习模型设计和优化相关的内容. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模 ...
-
【AI不惑境】模型压缩中知识蒸馏技术原理及其发展现状和展望
大家好,这是专栏<AI不惑境>的第十一篇文章,讲述知识蒸馏相关的内容. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程,那 ...
-
【AI不惑境】模型量化技术原理及其发展现状和展望
大家好,这是专栏<AI不惑境>的第十篇文章,讲述模型量化相关的内容. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程,那么 ...
-
【AI不惑境】模型剪枝技术原理及其发展现状和展望
大家好,这是专栏<AI不惑境>的第九篇文章,讲述模型剪枝相关的内容. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程,那么 ...
-
【AI不惑境】计算机视觉中注意力机制原理及其模型发展和应用
大家好,这是专栏<AI不惑境>的第八篇文章,讲述计算机视觉中的注意力(attention)机制. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿 ...
-
【AI不惑境】深度学习中的多尺度模型设计
大家好,这是专栏<AI不惑境>的第七篇文章,讲述计算机视觉中的多尺度问题. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程 ...
-
【AI不惑境】移动端高效网络,卷积拆分和分组的精髓
大家好,这是专栏<AI不惑境>的第六篇文章,讲述卷积拆分和分组卷积的精髓. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程 ...
