使用sklearn做自然语言处理-1
相关推荐
-
ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 设计思路 核心代码 ...
-
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测 输出结果 测试01:I love you 测试02:Ich liebe dich 训练数据 ...
-
【机器学习】总结了九种机器学习集成分类算法(原理 代码)
大家好,我是云朵君! 导读: 本文是分类分析(基于Python实现五大常用分类算法(原理+代码))第二部分,继续沿用第一部分的数据.会总结性介绍集成分类算法原理及应用,模型调参数将不在本次讨论范围内. ...
-
DL之RBM:(sklearn自带数据集为1797个样本*64个特征+5倍数据集)深度学习之BRBM模型学习+LR进行分类实现手写数字图识别
DL之RBM:(sklearn自带数据集为1797个样本*64个特征+5倍数据集)深度学习之BRBM模型学习+LR进行分类实现手写数字图识别 输出结果 实现代码 from __future__ imp ...
-
原理 代码,总结了 11 种回归模型
导读: 本文总结了一些常用的除线性回归模型之外的模型,其中包括一些单模型及集成学习器. 保序回归.多项式回归.多输出回归.多输出K近邻回归.决策树回归.多输出决策树回归.AdaBoost回归.梯度提升 ...
-
6.3. Preprocessing data
6.3. Preprocessing data The sklearn.preprocessing package provides several common utility functions ...
-
深度学习在图像分类中的应用ーー利用 Pytorch 从零开始创建 CNN
重磅干货,第一时间送达 推荐阅读 31个Python实战项目教你掌握图像处理,PDF开放下载 opencv_contrib扩展模块中文教程pdf,限时领取 引言 本文将解释一个卷积神经网络(CNN)的 ...
-
ML之NB&LoR:利用NB(朴素贝叶斯)、LoR(逻辑斯蒂回归)算法(+CountVectorizer)对Rotten Tomatoes影评数据集进行文本情感分析—五分类预测
ML之NB&LoR:利用NB(朴素贝叶斯).LoR(逻辑斯蒂回归)算法(+CountVectorizer)对Rotten Tomatoes影评数据集进行文本情感分析-五分类预测 输出结果 数据 ...
-
深度学习之PyTorch实战(3)
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
-
成功解决sklearn.exceptions.NotFittedError: This StandardScaler instance is not fitted yet. Call ‘fit‘ wi
成功解决sklearn.exceptions.NotFittedError: This StandardScaler instance is not fitted yet. Call 'fit' wi ...