ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估
相关推荐
-
算法模型自动超参数优化方法
什么是超参数? 学习器模型中一般有两类参数,一类是可以从数据中学习估计得到,我们称为参数(Parameter).还有一类参数时无法从数据中估计,只能靠人的经验进行设计指定,我们称为超参数(Hyper ...
-
ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估
ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 输出结果 Fitting 3 folds for each of 12 candid ...
-
ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测.评估 输出结果 设计思路 核心代码 class TfidfVectorizer F ...
-
ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测
ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测 输出结果 设计思路 核心代码 vec = CountVectorizer() X_train = vec.fit_transf ...
-
NLP之词向量:利用word2vec对20类新闻文本数据集进行词向量训练、测试(某个单词的相关词汇)
NLP之词向量:利用word2vec对20类新闻文本数据集进行词向量训练.测试(某个单词的相关词汇) 输出结果 寻找训练文本中与morning最相关的10个词汇: [('afternoon', 0.8 ...
-
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测.评估 输出结果 设计思路 核心代码 htt ...
-
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型(包括类别编码+属性重要程度排序)问题(实数值年龄预测)
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型(包括类别编码+属性重要程度排序)问题(实数值年龄预测) 输出结果 设计思路 核心代码 xCoded = [] for row ...
-
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测daiding
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 设计思路 更新-- 输出结果 <class 'pandas ...
-
ML之NB:基于news新闻文本数据集利用纯统计法、kNN、朴素贝叶斯(高斯/多元伯努利/多项式)、线性判别分析LDA、感知器等算法实现文本分类预测
ML之NB:基于news新闻文本数据集利用纯统计法.kNN.朴素贝叶斯(高斯/多元伯努利/多项式).线性判别分析LDA.感知器等算法实现文本分类预测 相关文章 ML之NB:基于news新闻文本数据集利 ...
-
ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能
ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能 输出结果 设计思路 核心代码 estimator = PCA(n_components=20) ...