ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测、评估
相关推荐
-
tidytextpy包 | 对《三体》进行情感分析
TidyTextPy 前天我分享了 tidytext | 耳目一新的R-style文本分析库 但是tidytext不够完善,我在tidytext基础上增加了情感词典,可以进行情感计算,为了区别前者,将 ...
-
如何计算出文本数据的相似矩阵?
今天要计算texts中两两文本计算相似性,生成texts对应的相似矩阵.我们需要先将text转为为向量,texts转化后就是文档-词频矩阵. texts = ['吃着火锅唱着歌,突然失业了怎么办?', ...
-
使用sklearn做自然语言处理-2
本文聚焦于特征工程(feature engineering)和其他步骤,如特征抽取(feature extraction).构建流水线(pipeline,很多翻译成油管,我个人觉得流水线似乎更准确). ...
-
【数据竞赛】Kaggle实战之特征工程篇-20大文本特征(上)
作者:尘沙杰少.樱落.新峰.DOTA.谢嘉嘉 特征工程--文本特征上半篇! 前 言 这是一个系列篇,后续我们会按照我们第一章中的框架进行更新,因为大家平时都较忙,不会定期更新,如有兴趣欢迎长期关注我们 ...
-
tidytext | 耳目一新的R-style文本分析库
tidytext是R语言的文本分析包,一般数据会整理为dataframe,每行都是由docid-word-freq组成.有一本R语言的文本挖掘书<Text mining with R>,知 ...
-
TFIDF | 有权重的计算文本情感得分
在论文 Kai Li, Feng Mai, Rui Shen, Xinyan Yan, Measuring Corporate Culture Using Machine Learning, The ...
-
如何从文本中提取特征信息?
虽然之前也写过gensim库的word2vec的教程,但是对于文本分析的特征提取并不太理解.最近看了几篇scikit的外文教程,对机器学习中文本的特征提取有了一些了解. 首先做文本的机器学习(自然语言 ...
-
ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估
ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 输出结果 Fitting 3 folds for each of 12 candid ...
-
ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估
ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 输出结果 Fitting 3 folds for each of 12 candid ...
-
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测.评估 输出结果 设计思路 核心代码 htt ...
-
ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测
ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测 输出结果 设计思路 核心代码 vec = CountVectorizer() X_train = vec.fit_transf ...
-
NLP之词向量:利用word2vec对20类新闻文本数据集进行词向量训练、测试(某个单词的相关词汇)
NLP之词向量:利用word2vec对20类新闻文本数据集进行词向量训练.测试(某个单词的相关词汇) 输出结果 寻找训练文本中与morning最相关的10个词汇: [('afternoon', 0.8 ...
-
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测daiding
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 设计思路 更新-- 输出结果 <class 'pandas ...
-
ML之NB:朴素贝叶斯Naive Bayesian算法的简介、应用、经典案例之详细攻略
ML之NB:朴素贝叶斯Naive Bayesian算法的简介.应用.经典案例之详细攻略 朴素贝叶斯Naive Bayesian算法的简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.朴素 ...
-
NLP之TopicModel:朴素贝叶斯NB的先验概率之Dirichlet分布的应用
NLP之TopicModel:朴素贝叶斯NB的先验概率之Dirichlet分布的应用 1.Dirichlet骰子先验和后验分布的采样 输出结果 实现代码 import numpy as np np.s ...
-
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测 输出结果 测试01:I love you 测试02:Ich liebe dich 训练数据 ...
