NLP之TopicModel:朴素贝叶斯NB的先验概率之Dirichlet分布的应用
相关推荐
-
极大似然估计、极大后验估计和贝叶斯估计
作者 :stephenDC 本文题目中的三个概念,都属于概率统计领域,但机器学习相关的工作者们,也应该很好地理解并掌握. 有些同学也许会反问,我不了解,也没用过这些东西,工作也做的很好啊? 那好,再来 ...
-
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测.评估 输出结果 设计思路 核心代码 htt ...
-
ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测.评估 输出结果 设计思路 核心代码 class TfidfVectorizer F ...
-
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测 输出结果 测试01:I love you 测试02:Ich liebe dich 训练数据 ...
-
NLP之NB&GBT:基于朴素贝叶斯(count/tfidf+网格搜索+4fCrva)、梯度提升树(w2c+网格搜索+4fCrva)算法对IMDB影评数据集进行文本情感分析(情感二分类预测)
NLP之NB&GBT:基于朴素贝叶斯(count/tfidf+网格搜索+4fCrva).梯度提升树(w2c+网格搜索+4fCrva)算法对IMDB影评数据集进行文本情感分析(情感二分类预测) ...
-
【NLP】经典分类模型朴素贝叶斯解读
贝叶斯分类器在早期的自然语言处理任务中有着较多实际的应用,例如大部分的垃圾邮件处理都是用的贝叶斯分类器.贝叶斯分类器的理论对于理解后续的NLP模型有很大的进益,感兴趣的小伙伴一定要好好看看,本文会详细 ...
-
ML之NB:朴素贝叶斯Naive Bayesian算法的简介、应用、经典案例之详细攻略
ML之NB:朴素贝叶斯Naive Bayesian算法的简介.应用.经典案例之详细攻略 朴素贝叶斯Naive Bayesian算法的简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.朴素 ...
-
ML之NB&LoR:利用NB(朴素贝叶斯)、LoR(逻辑斯蒂回归)算法(+CountVectorizer)对Rotten Tomatoes影评数据集进行文本情感分析—五分类预测
ML之NB&LoR:利用NB(朴素贝叶斯).LoR(逻辑斯蒂回归)算法(+CountVectorizer)对Rotten Tomatoes影评数据集进行文本情感分析-五分类预测 输出结果 数据 ...
-
ML之NB&LoR:利用NB(朴素贝叶斯)、LoR(逻辑斯蒂回归)算法(+TfidfVectorizer)对Rotten Tomatoes影评数据集进行文本情感分析—五分类预测
ML之NB&LoR:利用NB(朴素贝叶斯).LoR(逻辑斯蒂回归)算法(+TfidfVectorizer)对Rotten Tomatoes影评数据集进行文本情感分析-五分类预测 输出结果 数据 ...
-
ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测
ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测 输出结果 设计思路 核心代码 vec = CountVectorizer() X_train = vec.fit_transf ...