ML之NB:基于NB朴素贝叶斯算法训练20类新闻文本数据集进行多分类预测
相关推荐
-
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
-
朴素贝叶斯算法原理及实现
朴素贝叶斯算法简单高效,在处理分类问题上,是应该首先考虑的方法之一. 1.准备知识 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类. 这个定理解决了现实生活里经常遇到 ...
-
R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计
原文链接:http://tecdat.cn/?p=19664 MCMC是从复杂概率模型中采样的通用技术. 蒙特卡洛 马尔可夫链 Metropolis-Hastings算法 问题 如果需要计算有复杂后验 ...
-
[Python图像处理] 三十九.Python图像分类万字详解(贝叶斯图像分类、KNN图像分类、DN...
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门.OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子.图像增强技术.图像分割等,后期结合深度学习研究图像识别 ...
-
ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(TfidfVectorizer+不去除停用词)对20类新闻文本数据集进行分类预测.评估 输出结果 设计思路 核心代码 class TfidfVectorizer F ...
-
ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估
ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 输出结果 Fitting 3 folds for each of 12 candid ...
-
ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估
ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 输出结果 Fitting 3 folds for each of 12 candid ...
-
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测
ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测 输出结果 测试01:I love you 测试02:Ich liebe dich 训练数据 ...
-
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测daiding
ML之NB:基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 基于news新闻文本数据集利用朴素贝叶斯算法实现文本分类预测 设计思路 更新-- 输出结果 <class 'pandas ...
-
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测、评估
ML之NB:利用朴素贝叶斯NB算法(CountVectorizer+不去除停用词)对fetch_20newsgroups数据集(20类新闻文本)进行分类预测.评估 输出结果 设计思路 核心代码 htt ...
-
ML之NB:利用NB朴素贝叶斯算法(CountVectorizer/TfidfVectorizer+去除停用词)进行分类预测、评估
ML之NB:利用NB朴素贝叶斯算法(CountVectorizer/TfidfVectorizer+去除停用词)进行分类预测.评估 输出结果 设计思路 核心代码 class CountVectoriz ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
