DL之AE:自编码器AutoEncoder的简介、应用、经典案例之详细攻略
相关推荐
-
(3条消息) VAE 模型基本原理简单介绍
VAE 模型基本原理简单介绍 1. 编写目的 2. 推荐资料 3. 相关背景 3.1 生成模型(Generative model): 3.2 隐变量模型(Latent Variable Models) ...
-
神经网络可以像经典主成分分析一样执行降维吗?
介绍 主成分分析(PCA)是最流行的降维算法之一.PCA的工作原理是找出在数据中相互正交的方差很大的轴.在我ᵗʰ轴被称为我ᵗʰ主成分(PC).执行PCA的步骤是: 标准化数据. 从协方差矩阵或相关矩阵 ...
-
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介、应用、经典案例之详细攻略
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介.应用.经典案例之详细攻略 相关文章 DL:深度学习(神经网络)的简介.基础知识(神经元/感知机.训练策略.预测原理).算法分类 ...
-
DL之HNN:Hopfield神经网络(HNN之DHNN、CHNN)的相关论文、简介、使用案例之详细攻略
DL之HNN:Hopfield神经网络(HNN之DHNN.CHNN)的相关论文.简介.使用案例之详细攻略 导读:Hopfield神经网络(HNN)是一种具有循环.递归特性,结合存储和二元系统的神经网络 ...
-
ML之LoR:逻辑回归LoR算法的简介、应用、经典案例之详细攻略
ML之LoR:逻辑回归LoR算法的简介.应用.经典案例之详细攻略 逻辑回归LoR算法的简介 逻辑回归最适合二进制分类(y = 0或1的数据集,其中1表示默认类).例如:在预测事件是否发生时,发生的事件 ...
-
ML之SVM:SVM算法的简介、应用、经典案例之详细攻略
ML之SVM:SVM算法的简介.应用.经典案例之详细攻略 SVM算法的简介 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning ...
-
ML之RF:随机森林RF算法简介、应用、经典案例之详细攻略
ML之RF:随机森林RF算法简介.应用.经典案例之详细攻略 随机森林RF算法简介 随机森林指的是利用多棵决策树对样本进行训练并预测的一种分类器.它包含多个决策树的分类器,并且其输出的类别是由个别树输出 ...
-
ML之kNN:k最近邻kNN算法的简介、应用、经典案例之详细攻略
ML之kNN:k最近邻kNN算法的简介.应用.经典案例之详细攻略kNN算法的简介邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓 ...
-
ML之Clustering之K-means:K-means算法简介、应用、经典案例之详细攻略
ML之Clustering之K-means:K-means算法简介.应用.经典案例之详细攻略 K-means算法简介 K-均值是著名聚类算法,它找出代表聚类结构的k个质心.如果有一个点到某一质心的距离 ...
-
ML之NB:朴素贝叶斯Naive Bayesian算法的简介、应用、经典案例之详细攻略
ML之NB:朴素贝叶斯Naive Bayesian算法的简介.应用.经典案例之详细攻略 朴素贝叶斯Naive Bayesian算法的简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.朴素 ...
-
ML之SSL:Semi-Supervised Learning半监督学习的简介、应用、经典案例之详细攻略
ML之SSL:Semi-Supervised Learning半监督学习的简介.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201 ...
