正面刚CNN,Transformer居然连犯错都像人类|细胞|序列|卷积|上下文|纹理
相关推荐
-
NAS+CNN+Transformer=ViT-Res!MIT团队重磅开源ViT-Res,精度高于DeiT-Ti8.6%
本文分享论文『Searching for Efficient Multi-Stage Vision Transformers』,由 MIT 团队重磅开源 ViT-Res,Tiny 模型精度比 DeiT ...
-
完全图解GPT-2:看完这篇就够了(一)
设为 "星标",重磅干货,第一时间送达! 选自github.io,作者:Jay Alammar 机器之心编译 今年涌现出了许多机器学习的精彩应用,令人目不暇接,OpenAI 的 G ...
-
用Transformer进行图像语义分割,性能超最先进的卷积方法!
重磅干货,第一时间送达 丰色 发自 凹非寺 报道 | 量子位 正如大家所知,在进行图像语义分割时,图像被编码成一系列补丁后往往很模糊,需要借助上下文信息才能被正确分割. 因此上下文建模对图像语义分割的 ...
-
NeurIPS2021-《YOLOS》-ViT现在可以做目标检测任务啦!华科提出目标检测新方法YOLOS
NeurIPS2021-《YOLOS》-ViT现在可以做目标检测任务啦!华科提出目标检测新方法YOLOS
-
2021年了,Transformer有可能替代CNN吗?未来有哪些研究方向?
Transformer 的跨界之旅,从 2020 延续到了 2021. 2020 年 5 月,Facebook AI 推出了 Detection Transformer,用于目标检测和全景分割.这是第 ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...
-
用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读)
作者丨科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文将介绍一个优秀的PyTorch开源库--timm库,并对其中的vision transformer.py代码进行了详细解读.>> ...
-
一文理解 Transformer 的工作原理
概 述 自然语言处理中的 Transformer 模型真正改变了我们处理文本数据的方式. Transformer 是最近自然语言处理发展的幕后推手,包括 Google 的 BERT. 了解 Tran ...
-
NeurIPS2021 MBT:多模态数据怎么融合?谷歌提出基于注意力瓶颈的方法,简单高效还省计算量
详细信息如下: 论文链接:https://arxiv.org/abs/2107.00135 项目链接:未开源 导言: 人类通过同时处理和融合多种模态(如视觉和音频)的高维输入来感知世界.然而,机器感知 ...
-
一年六篇顶会的清华大神提出Fastformer:史上最快、效果最好的Transformer
新智元报道 来源:arXiv 编辑:LRS [新智元导读]Transformer模型好是好,可惜太慢了!最近一位清华大神在arxiv上传了一篇论文,提出新模型Fastformer,线性时间复杂度,训练 ...
-
GitHub项目推荐|基于强化学习的自动化剪枝模型
今天为大家介绍一个GitHub上最新开源的一个基于强化学习的自动化剪枝模型,本模型在图像识别的实验证明了能够有效减少计算量,同时还能提高模型的精度.项目地址:https://github.com/fr ...
-
Transformer也能生成图像
Transformer 已经为多种自然语言任务带来了突飞猛进的进步,并且最近也已经开始向计算机视觉领域渗透,开始在一些之前由 CNN 主导的任务上暂露头角.近日,加州大学圣迭戈分校与 Google R ...
-
剑桥三星AI中心提出“X-ViT”:基于时空混合attention的视频Transformer,大幅度降低计算复杂度
▊ 写在前面 本文介绍了利用Transformer进行的视频识别问题.最近Transformer在视频识别领域的尝试在识别精度方面展现出了非常不错的结果,但在许多情况下,由于时间维度的额外建模,会导致 ...
-
计算机视觉中的Transformer
作者:Cheng He 编译:ronghuaiyang 导读 将Transformer应用到CV任务中现在越来越多了,这里整理了一些相关的进展给大家. Transformer结构已经在许多自然语言处理 ...
-
你仅需要看一个序列!YOLOS:重新思考Transformer的泛化性能
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文是华科&地平线关于Transformer的迁移学习.泛化性能方面的深度思考.重点揭示了Transformer的迁移学习能力与泛化性 ...