没有点积注意力就不香了吗?Transformer中自注意力机制的反思
相关推荐
-
谷歌Transformer再升级——新模型实现性能、速度双提升,发展潜力巨大
当我们在翻译软件上输入 "Transformer is a novel neural network architecture based on a self-attention mecha ...
-
AAAI 2021最佳论文Runners Up!Transformer的归因探索!
本文转载自:炼丹笔记 作者:一元,四品炼丹师 Self-Attention Attribution: Interpreting Information Interactions Inside Tran ...
-
线性Transformer只是LSTM的一种变体
人工智能算法与Python大数据 致力于提供深度学习.机器学习.人工智能干货文章,为AI人员提供学习路线以及前沿资讯 23篇原创内容 公众号 点上方人工智能算法与Python大数据获取更多干货 在右上 ...
-
注意力可以使MLP完全替代CNN吗? 未来有哪些研究方向?
深度学习技术前沿 121篇原创内容 公众号 链接:https://arxiv.org/abs/2105.15078 导读:本文主要介绍清华大学胡事民团队最新发表在Arxiv上的研究论文,主要针对注意力 ...
-
重大里程碑!VOLO屠榜CV任务,无需额外数据,首次在ImageNet 上达到87.1%
深度学习技术前沿 126篇原创内容 Official Account 链接:https://arxiv.org/abs/2106.13112 代码:https://github.com/sail-sg ...
-
可交互的 Attention 可视化工具!我的Transformer可解释性有救了?
视觉是人和动物最重要的感觉,至少有80%以上的外界信息是经过视觉获得的.我们看论文的时候,通过图表来确定文章的大致内容往往也是一个更高效的 说到深度神经网络的可视化,最经典的莫过于的CNN密恐图了: ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...
-
NeurIPS2021 MBT:多模态数据怎么融合?谷歌提出基于注意力瓶颈的方法,简单高效还省计算量
详细信息如下: 论文链接:https://arxiv.org/abs/2107.00135 项目链接:未开源 导言: 人类通过同时处理和融合多种模态(如视觉和音频)的高维输入来感知世界.然而,机器感知 ...
-
自注意力真的是Transformer的必杀技吗?MSRA否认三连,并反手给你扔来一个sMLPNet
作者丨happy 编辑丨极市平台 极市导读 本文构建了一种Attention-free.基于MLP的sMLPNet,主要将MLP模块中的token-mixing替换为稀疏MLP(sparse MLP, ...
-
NeurIPS 2020 | MiniLM:通用模型压缩方法
基本信息 标题: MiniLM: Deep Self-Attention Distillationfor Task-Agnostic Compression of Pre-Trained Transf ...
-
【深度学习】Transformer长大了,它的兄弟姐妹们呢?(含Transformers超细节知识点...
最近复旦放出了一篇各种Transformer的变体的综述(重心放在对Transformer结构(模块级别和架构级别)改良模型的介绍),打算在空闲时间把这篇文章梳理一下: 知乎:https://zhua ...