自注意力真的是Transformer的必杀技吗?MSRA否认三连,并反手给你扔来一个sMLPNet
相关推荐
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(八)
作者丨科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第八篇,本文主要介绍了两个用以加深Transformer模型的工作:DeepViT.CaiT ...
-
没有残差连接的ViT准确率只有0.15%!北大&华为提出用于ViT的增强 Shortcuts,涨点显著!
详细信息如下: 论文链接:https://arxiv.org/abs/2106.15941 项目链接:未开源 导言: 近年来,Transformer模型在计算机视觉领域取得了很大的进展.视觉Trans ...
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(六)
作者丨科技猛兽 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第六篇,主要介绍了2种将卷积引入Transformer模型的方法:CvT和CeiT.>>加入极 ...
-
ResNet被全面超越了,是Transformer干的:依图科技开源“可大可小”T2T-ViT,轻量版优于MobileNet
作者丨Happy 审稿|邓富城 编辑丨极市平台 极市导读 又一篇Transformer来了!本文在ViT方面进行了一次突破性探索,提出了首次全面超越ResNet,甚至轻量化版本优于MobileNet系 ...
-
注意力可以使MLP完全替代CNN吗? 未来有哪些研究方向?
深度学习技术前沿 121篇原创内容 公众号 链接:https://arxiv.org/abs/2105.15078 导读:本文主要介绍清华大学胡事民团队最新发表在Arxiv上的研究论文,主要针对注意力 ...
-
LG-Transformer:全局和局部建模Transformer结构新作
写在前面 近段时间,基于Transformer的结构在CV领域展现出了很大的应用潜力,已经逐渐掩盖了CNN的光芒.Transformer的缺点也很明显:计算复杂度和输入的特征大小呈平方的关系.因此直接 ...
-
各类Transformer都得稍逊一筹,LV-ViT:探索多个用于提升ViT性能的高效Trick
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文探索了用于提升ViT性能的各种训练技巧.通过一系列实验对比.改进与组合,本文所提方案取得了SOTA方案,超越了EfficientNet.T ...
-
CV领域,Transformer在未来有可能替代CNN吗?
在这个大火的阶段,确实值得我们反思一下,self-attention和CNN结构相比,到底有什么联系与区别,两者在相同配置下有什么样的差距? 尤其近期一些工作在Transformer结构中引入loca ...
-
继 Swin Transformer 之后,MSRA 开源 Video Swin Transformer,在视频数据集上SOTA
详细信息如下: 论文链接:https://arxiv.org/abs/2106.13230 项目链接:https://github.com/SwinTransformer/Video-Swin-Tra ...
-
NeurIPS 2021 Transformer部署难?北大&华为诺亚提出Vision Transformer的后训练量化方法
详细信息如下: 论文链接:https://arxiv.org/abs/2106.14156 项目链接:未开源 导言: 最近,Transformer在各种计算机视觉应用中取得了不错的性能.与主流卷积神经 ...
-
图解GPT-2(完整版)!
Datawhale干货 译者:张贤, 哈尔滨工程大学,Datawhale原创作者 干货长文,建议收藏阅读,收藏等于看完. 审稿人:Jepson, Datawhale成员, 毕业于中国科学院,目前在腾讯 ...
-
CNN+Transformer=Better,国科大&华为&鹏城实验室提出Conformer,84.1% Top-1准确率
0 写在前面 在卷积神经网络(CNN)中,卷积运算擅长提取局部特征,但在捕获全局特征表示方面还是有一定的局限性.在Vision Transformer中,级联自注意力模块可以捕获长距离的特征依赖,但会 ...
-
超越Swin,Transformer屠榜三大视觉任务!微软推出新作:Focal Self-Attention
作者丨小马 编辑丨极市平台 极市导读 本文提出了Focal Self-Attention,对当前token周围的区域进行细粒度的关注,对离当前token较远的区域进行粗粒度的关注,用这样的方式来更加有 ...
-
Self-Attention真的是必要的吗?微软&中科大提出Sparse MLP,降低计算量的同时提升性能!
▊ 写在前面 Transformer由于其强大的建模能力,目前在计算机视觉领域占据了重要的地位.在这项工作中,作者探究了Transformer的自注意(Self-Attention)模块是否是其实现图 ...
-
MLP 又又又升级了!港大&商汤开源首个用于检测与分割任务的MLP架构
作者丨happy 编辑丨极市平台 极市导读 本文针对MLP-Mixer等已有方案存在的分辨率相关.不便于向下游任务迁移的问题,提出了一种新颖的CycleFC操作,并由此构建了CycleMLP架构.本文 ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...